JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Enhancing Real-Time Operating System Security
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Bo Zhang, Shenghong Li, and Zhi Xue

Abstract—Real-Time Operating System (RTOS) has become
the main category of embedded systems. It is widely used to
support tasks requiring real-time response such as printers and
switches. The security of RTOS has been long overlooked as
it was running in special environments isolated from attackers.
However, with the rapid development of IoT devices, tremendous
RTOS devices are connected to the public network. Due to
the lack of security mechanisms, these devices are extremely
vulnerable to a wide spectrum of attacks. Even worse, the
monolithic design of RTOS combines various tasks and services
into a single binary, which hinders the current program testing
and analysis techniques working on RTOS.

In this paper, we propose SFUZZ++, a novel slice-based fuzzer
designed to detect security vulnerabilities in RTOS. Leveraging
the insight that RTOS tasks are typically independent, single-
purpose, and deterministic, SFUZZ++ extracts task-specific code
slices for targeted testing. Specifically, SFUZZ++ first identifies
external input points that manage user input, with assistance
from LLMs, and constructs call graphs from these points. Then,
it leverages forward slicing to build the sensitive call graph
and prune the paths independent of sink points (e.g., memcpy).
Further, it detects and handles roadblocks within the coarse-
grain scope that hinder effective fuzzing, such as call sites
unrelated to the user input or conditional branches unrelated
to sink points. At the same time, it attempts to restore the
context of the slices to recreate the actual runtime state. And
then, it conducts coverage-guided fuzzing on these code snippets.
Finally, SFUzZz++ leverages forward and backward slicing to
track and verify each path constraint and determine whether a
bug discovered in the fuzzer is a real vulnerability. SFUZZ++
successfully discovered 82 zero-day bugs on 35 RTOS samples,
and 78 of them have been assigned CVE or CNVD IDs. Our
empirical evaluation shows that SFUZZ++ outperforms the state-
of-the-art tools (e.g., UnicornAFL) on testing RTOS.

Index Terms—RTOS, Slice-based fuzzing, Taint analysis, Con-
colic execution.

I. INTRODUCTION

eal-Time Operating System (RTOS) is designed for real-
Rtime applications and is widely used in embedded micro-
controllers and CPUs, with billions of installations globally.
For example, VxWorks, a leading RTOS [6], powers over two
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billion devices [14]. Critical applications, such as NASA’s
InSight Spacecraft [15], demand RTOS for its deterministic
real-time performance and stringent safety and security certifi-
cations. However, integrating traditional security mechanisms
into RTOS is challenging due to its design constraints. To
ensure immediate task responses, RTOS sacrifices kernel-user
space isolation [10] and operates in a flat memory model,
minimizing context-switching overhead but allowing unre-
stricted memory access [8]. This monolithic design was once
acceptable in isolated local networks with minimal external
threats.

The rise of the Internet of Things (IoT) has changed this
landscape, directly connecting RTOS devices to the Internet
and exposing them to external attackers. This shift makes
proactive vulnerability detection critical. Unfortunately, most
existing bug detection methods for embedded systems [12],
[20]-[23], [50], [51] are ill-suited for RTOS. Typically dis-
tributed as monolithic firmware blobs, RTOS operates as a
single execution environment encompassing the kernel, sched-
uler, and task modules. This structure complicates traditional
bug detection approaches, which rely on modular or multi-
layered architectures.

Traditional static analysis methods [12], [20], [52], [53] face
significant challenges when applied to large, monolithic RTOS
binaries. Classic approaches like symbolic execution [1], [2],
[5], [54] often encounter path explosion issues, while the
absence of explicit function symbols and the complexity of
RTOS architectures make it difficult to interpret function
semantics at the binary level. This limits the ability to identify
sensitive data modules or perform detailed analysis. Dynamic
analysis techniques [18], [21]-[23], [56]-[59], such as fuzzing,
require either physical devices or accurate emulation to test
firmware and services. However, the diversity of peripherals
and interfaces across RTOS vendors [6], [7], [38] makes
comprehensive emulation impractical.

Existing methods offer limited solutions [55]. For instance,
Zhu et al. [17] use debugging to detect vulnerabilities in
VxWorks-based IoT devices; Liu et al. [56] leverage concolic
co-execution on real MCU hardware to enhance vulnerability
detection; and Wen et al. [18] focus on identifying config-
uration errors in bare-metal BLE firmware. Scharnowski et
al. [59] further investigate fuzzing peripheral (MMIO) inputs
through full-system emulation. However, these approaches
tend to be device-specific, require physical hardware or system
emulation [17], [56], [58], [59], and are often restricted
to particular inputs and bug types [18]. Similarly, Salehi
et al. [19] and Clements et al. [11] propose methods for
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observing memory corruption and extending analysis tools
like HALucinator [24]. Yet, these methods often depend on
RTOS source code, manual effort, or extensive development
for scalability [19]. Hence, current approaches lack flexibility,
scalability, and generality, leaving a significant gap in effec-
tively discovering vulnerabilities in RTOS systems.

Despite the challenges, specific RTOS features offer unique
opportunities to overcome testing barriers, particularly through
its multi-tasking mechanism. RTOS applications are typically
divided into numerous single-purpose tasks, each handling
specific events in a deterministic and isolated manner. These
tasks exhibit straightforward and independent control flows.
Notably, tasks within the same category often share similar
data flow patterns. Leveraging this characteristic, our basic
idea is focusing on analyzing the data flow from various
external data entry points to potential sink functions (e.g.,
memcpy). By slicing code snippets related to these flows across
tasks, we isolate compact, critical segments for analysis. These
slices are significantly smaller and more focused than the full
RTOS binary, making them well-suited for existing testing
techniques, such as greybox fuzzing and symbolic execution.

Unlike function-level testing, which often lacks the broader
context of data processing, our slicing approach captures
‘complete’ data flow logic. This reduces the risk of false
positives caused by incomplete testing contexts, providing a
more accurate and holistic view of potential vulnerabilities.
Meanwhile, this approach addresses the scalability and com-
plexity issues of other traditional methods. By reducing the
control-flow scope and simplifying emulation requirements,
we enable more efficient and effective testing, bypassing the
limitations of comprehensive emulation or manual analysis.
This targeted slicing approach aligns with RTOS’s inherent
modularity, turning its structure into an advantage for vul-
nerability discovery. Nonetheless, achieving effective slice-
based fuzzing still requires addressing the following several
key challenges posed by the unique characteristics of RTOS.

External Input Points Identification. RTOS firmware,
typically distributed as binary code without symbol informa-
tion, presents challenges in identifying external input entry
points. To address this, we use heuristic methods to recover
function symbols for explicit inputs, such as network data,
and accurately locate these entry points. For implicit inputs,
like external data processed by callback functions or interrupt
handlers and stored in global memory buffers, the lack of
explicit control flow often causes them to be overlooked. To
mitigate this, we leverage LLMs to infer function semantics,
categorizing relevant functions to identify potential implicit
input entry points.

Code Snippet Scope and Context Retrieval. To analyze
RTOS firmware effectively, an automated method is needed to
identify functionally independent code snippets while captur-
ing their runtime dependencies for accurate testing. To achieve
this, SFUZZ++ constructs a call graph rooted at external input
points and applies forward slicing to isolate relevant paths.
It eliminates paths unrelated to inputs, adjusts conditional
branches to guide control flow toward potential sink functions,
and dynamically links execution paths across tasks, including
those involving direct physical memory access. Additionally,

SFuUzz++ traces the memory constraints required during snip-
pet execution to define precise context information for subse-
quent testing, supported by large language models (LLMs).

Path Exploration and Issue Detection. The constraints
within RTOS code snippets can hinder efficient path explo-
ration during testing, while the lack of effective mechanisms
makes detecting errors challenging. For instance, conditional
branches based on variables unrelated to external inputs cannot
be influenced by input mutation, limiting fuzzing effectiveness.
To address these challenges, SFUZZ++ initializes the runtime
environment based on its analysis and uses a Control Flow
Node Handler to guide the fuzzer, bypassing function calls
and branches unrelated to external inputs. By integrating
fuzzing with symbolic execution, it generates valid seeds ca-
pable of navigating complex conditional guards. Additionally,
SFuzz++ enforces memory safety checks for stack frames
and global regions, ensuring violations are detected within
the reconstructed environment. This approach enhances path
reachability and improves error detection during testing.

Potential Vulnerability Validation. During fuzzing, we use
several techniques to mask the influence of other variables
or path conditions to enhance fuzzing effectiveness. However,
this approach can make it challenging to assess whether the
triggered issues would occur in a real-world scenario. To ad-
dress this, when a bug-triggering input is identified, SFUzZz++
restores the modified conditional branches and symbolizes
the context of any ignored functions. It then uses symbolic
execution to recover the omitted context from the pruned
call graph, evaluating the relevance of the corresponding
conditions. This enables SFUZZz++ to generate a complete and
accurate path condition, allowing for effective vulnerability
validation.

Building on this foundation, we introduce SFUZZ++, a
novel slice-based fuzzing framework tailored for RTOS.
SFuzz++ processes monolithic firmware binaries by lever-
aging large language models (LLMs) to identify various types
of external data entry points. It then combines data flow
analysis with forward slicing to extract relevant code segments
along with their broader execution context. Using this tailored
code space, SFUZz++ initializes the runtime environment
with context information and applies greybox fuzzing to un-
cover potential vulnerabilities. To ensure thorough validation,
SFuzz++ employs backward slicing to conduct concolic
execution, verifying crash-inducing inputs identified during
fuzz testing.

We implement our prototype of SFUZZ++ based on
Ghidra [39], angr [5] and UnicornAFL [26] with around
10,800 lines of Python code, 4,600 lines of C code, and 5,100
lines of Java code. To understand the efficacy of SFUZz++ in
detecting security vulnerabilities in RTOS, we apply our tool to
35 firmware samples from 11 vendors. SFUzz++ successfully
discovered 82 unknown vulnerabilities in these latest-version
firmware samples. We also compare SFUZZ++ with the state-
of-the-art tools, and SFUzz++ outperforms all compared tools.
Summary of Changes. This paper is an extension of our
conference version appearing in the Proceedings of the ACM
CCS 2022. In this extension, we added lots of new content
according to the feedback from the reviewers and readers
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after publication, including a refined and more comprehensive
definition of external input points in the RTOS, improvements
to the Code Snippet Scope Extractor for a more extensive
scope and context, and optimized initialization and strategies
for the fuzzer to achieve more accurate and efficient fuzz
testing. Furthermore, we reimplemented the prototype of the
improved analysis tool and updated the experimental results
using the latest versions of relevant tools (e.g., unicornafl
and angr). We also conducted new experiments, presented
fresh analyses, and provided insights derived from the latest
discoveries. Additionally, many sections of the paper were
rewritten and refined to improve readability.
In summary, we make the following contributions:

e We propose a slice-based fuzzing method for testing real-
time operating systems (RTOS). This method leverages
LLM to identify external input points, employs forward
slicing to prune the control flow and restore the context
environment for efficient fuzz testing, and incorporates
backward slicing to validate alerts generated during fuzzing.

o We design and implement SFUZZ++', which performs slice-
based fuzzing through cross-platform CPU emulation to
effectively detect vulnerabilities in RTOS firmware.

e We evaluated SFUZZ++ on 35 real-world RTOS firmware
samples from 11 vendors and discovered 82 unknown bugs.
78 bugs have been assigned CVE/CNVD IDs.

II. PROBLEM AND SOLUTION

In this section, we first provide the background of vulner-
abilities in RTOS. Then, we discuss the key challenges and
propose corresponding solutions.

A. Security Risk Detection in RTOS

Real-Time Operating Systems (RTOS) are widely used in
embedded devices such as printers, switches, and routers due
to their ability to ensure deterministic task execution and
meet real-time requirements. To optimize performance under
constraints like limited memory and rapid task scheduling [10],
[12], many vendors compile RTOS into a monolithic binary
encompassing all functionalities. To further reduce the binary
size, system symbols are often stripped during the compilation
process. While these practices enhance efficiency, they pose
significant challenges for researchers attempting to emulate
entire RTOS-based systems or analyze their security.

While the monolithic and stripped nature of RTOS binaries
poses significant challenges for security analysis, their frequent
interaction with external data sources such as networks or
Bluetooth further amplifies security risks. These interactions
create potential attack vectors, enabling malicious actors to
exploit vulnerabilities in data processing. Furthermore, many
of these devices serve as critical nodes in home or Local
Area Networks (LANSs), yet they often lack advanced defense
mechanisms like Executable Space Protection [48] or stack
canaries [47] that are standard in modern operating systems.
This combination of exposure to external data and insufficient

'We will release the source code at https://github.com/NSSL-SITU/SFuz
z_Pro/blob/main.

1 void devDiscoverHandle(int sockfd) {

2 int len, ret;

3 struct sockaddr_in src_addr;

4 int addrlen = sizeof(struct sockaddr_in);
5 memset ((uint8 *)&src_addr, 0, 0x10);

6 memset (Global_addr, 0, 0x5C0);

7 len = recvfrom(sockfd, Global_addr+0xlc,
8 (struct sockaddr *)&src_addr, (socklen_t
9 if ( len != ERROR )

0®x5a4, O,
*)&addrlen);

10 ret = protocol_handler((packet *)(Global_addr+0x1c));
11 if (ret == ERROR)

12 logOutput ("devDiscoverHandle Error!");

13}

14 int protocol_handler(packet *data) {

15 bytes[4] = {0xel, Ox2b, 0x83, 0xc7};

16 if (header_check(data))

17 if (magic_check(data->magic_bytes, bytes, 4))
18 if (checksum(data))

19 return msg_handler(data);

20 return ERROR;

21 }

22 int msg_handler(packet *data) {

23 int ret = ERROR;

24 if (data->version == 0x01)

25 ret=parse_advertisement (data->payload, data->payloadLen);
26 return ret;

27 }

28 int parse_advertisement(uint8 *payload,
29 char* dst;

30 char* var_addr;

31 char buffer[64];

32 int index;

33 var_addr = DAT_404d33a8;

34 msg_element *element;

35 msg_element_header *element_header;

int payloadlLen) {

36 element = parse_msg_element(payload, payloadlLen);
37 element_header = element->header;

38 if (element_header) {

39 index = (int)*(var_addr+4));

40 dst = buffer+index;

41 if (copy_msg_element ((char *)element->data, dst,
42 element_header->len) == 0) //Stack Overflow
43 return SUCCESS;

44 }

45 return ERROR;

46 }

Listing 1: Pseudocode of the simplified motivation example.

defenses makes RTOS-based devices high-value targets for
attackers, underscoring the importance of developing effective
vulnerability detection methods tailored to these systems.

Motivation Example. To illustrate the security risks in
RTOS-based devices, consider a buffer overflow vulnerability
we identified in the TP-Link WDR7660’s RTOS using our
tool, SFUzZz++. This vulnerability, which has been fixed and
assigned CVE-2020-28877, highlights the risks associated with
processing external data. The issue arises in a function re-
sponsible for handling incoming packets, as shown in the code
snippet in Listing 1. The function first validates the packet’s
format (protocol_handler in Line 10) via verifying header
size (Line 16), magic bytes (Line 17), and checking integrity
using a checksum (Line 18). If these checks are passed, the
execution continues to a handler function (msg_handler in
Line 19), which processes the packet based on its version (Line
24). Finally, the parse_advertisement function extracts the
header of the element structure from the packet payload and
copies it to a memory buffer (Line 36-42). The vulnerability
occurs at Line 42, where the length of the element’s data
section, specified in its len field, can exceed the buffer size,
allowing an attacker to trigger a stack overflow by crafting a
malicious packet.

Limitations. Current bug-finding techniques for embedded
systems struggle to detect such vulnerabilities effectively.
Dynamic approaches like fuzzing or emulation face significant
barriers when dealing with RTOS binaries due to their mono-
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lithic structure, lack of hardware abstraction, and proprietary
data formats. For instance, applying a tool like SRFuzzer [40]
to locate this vulnerability would require extensive manual
reverse engineering to identify all supported data formats,
craft appropriate inputs, and trigger the specific handling
code—a process that demands significant expertise and effort.
Static approaches such as KARONTE [12] or SaTC [20] also
encounter limitations. KARONTE primarily focuses on inter-
process communication, while SaTC relies on keyword-based
heuristics to identify user inputs. Neither approach is well-
suited to analyzing monolithic RTOS binaries, especially when
complex control flow paths, such as the one in this example,
obscure the link between data entry points (e.g., recvfrom)
and sink functions (e.g., memcpy).

B. Our Method and Challenges

Detecting vulnerabilities in RTOS-based embedded devices
is inherently challenging. While dynamic methods are gen-
erally more effective than static analysis due to their ability
to simulate real execution paths, they often demand extensive
manual intervention and full-system emulation—requirements
that are impractical for diverse RTOS implementations. This
raises a critical question: How can we dynamically detect
vulnerabilities in RTOSes without relying on labor-intensive
manual analysis or complete system emulation?

To address this, we propose slice-based fuzzing, a method
that focuses on isolating and fuzzing functionally independent
code snippets to identify bugs in RTOSes. The core intuition is
that program slices, comprising all functions responsible for
receiving and processing external data, can be analyzed in-
dependently. This approach leverages fuzzing and instruction-
level emulation, effectively bypassing the need for emulating
entire hardware systems and embedded services. The validity
of this intuition has been substantiated in our prior work [49],
where experimental results demonstrated that function sets
from RTOS-based systems exhibit functional independence in
terms of control flow and data flow. To apply this method
to RTOS of various embedded devices, we need to address
following four challenges.

C1. How to identify the external data entry points? To
locate external data input, we must identify both explicit and
implicit data entry points in the RTOS codebase. Explicit input
points, such as data read functions, can often be recognized
even in the absence of symbol files. However, implicit input
points, which directly reference buffers, require semantic anal-
ysis. For instance, in the code snippet shown in Listing 2, the
function wifi_config_set accesses a global buffer at Line 18.
Analyzing the semantics of such reference-point functions is
necessary to determine whether they are used for external data
parsing. While traditional static and dynamic analysis methods
are labor-intensive, advanced code understanding capabilities
of large language models can significantly automate this
process.

C2. How to determine the scope of the snippets and their
context? Code snippets reachable from external inputs often
include irrelevant paths, unrelated functions, or paths that do
not lead to critical sink functions, all of which reduce fuzzing

void Global_func_table_init() { // Global environment init
registerFunc (0, Global_func_table, global_func_addr_0);
registerFunc(l, Global_func_table, global_func_addr_1);

nt wifiRecvData(int sockfd, int offset) {
struct sockaddr_in addr;

int ret, len = sizeof(struct sockaddr_in);
memset ((uint8 *)&addr, 0, 0x10);

9 ret = recvfrom(sockfd, 0x80004000,

10 return ret;

© N u s W e
[

0x5DC, 0, &addr, &len);

12 void wifi_config_handler() {

13 char buf[4];

14 memset (buf, 0, sizeof(buf));

15 wifi_config_set(buf);

16 }

17 void wifi_config_set(char* buf) {

18 char* input = (char*)0x80004000; //
19 char* other_var = (char*)0x80008000;

20 if (global_match(input, Global_func_table))

Implicit input

21 if (*other_var)

22 strncpy (buf, input, len(input) + 1); // Buffer Overflow
23 else

24 logOutput ("wifi_config_set Error!");

25 }

Listing 2: Code Samples for Implicit Input Identification and Context
Information Restoration.

efficiency. Moreover, these snippets often access global vari-
ables or local variables from their direct or indirect caller
functions, which complicates the restoration of the execution
context. For example, in Listing 2, wifi_config_set uses the
global variable Global_func_table (Line 20) initialized in
Global_func_table_init and treats parameters passed from
the upper layer (Line 15) as a buffer for strncpy (Line 22).
Without accurately extracting the memory constraints on these
variables within the RTOS system logic and reconstructing
their values, fuzzing may produce unintended or erroneous
results.

C3. How to effectively conduct slice-based fuzzing? As
discussed in C2, the constraints within RTOS code snippets
directly influences the subsequent behavior during fuzzing,
making it necessary to restore the contextual environment
to ensure the fuzzing process accurately reflects the real
execution state. Additionally, some function calls and condi-
tional branches can impact the reachability of the execution
path? and the overall efficiency of fuzzing. For example,
some functions may be beyond the emulator’s capability to
emulate, thereby limiting path reachability. Moreover, certain
conditional branches rely on variables that are not influenced
by the input (e.g., Line 21 in Listing 2). Since these variables
cannot be modified through seed mutation, it is not possible to
control the direction of subsequent branches that depend on
these comparisons. Moreover, given the absence of defense
mechanisms in the RTOS, we need to establish a security
check strategy to identify potential vulnerabilities.

C4. How to verify the vulnerabilities detected in the
code snippets? Because fuzzing is performed on isolated code
snippets, we must ensure that detected crashes represent real
vulnerabilities in the original RTOS. This requires designing
methods to evaluate whether a proof of concept (PoC) resulting
in a crash corresponds to an actual security flaw.

Our Solutions. Consider the code snippet in Listing 1.
By identifying the data-receiving function (Line 8) and all

2Execution Path refers to the sequence of instructions executed by the target
firmware starting from a data-receiving point with a specific test case.
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Fig. 1: Overview of SFUZZ++. It takes the firmware of the real-time embedded devices as input and outputs their bug reports.

functions involved in processing the data package (e.g., copy
in Line 42), we construct a program slice tailored for analysis.
Coverage-guided hybrid fuzzing is then used to generate inputs
that can trigger vulnerabilities, such as the stack overflow
shown in the example. To ensure efficient and stable fuzzing,
we extract and solve the memory constraints related to the
code snippets to restore the contextual environment with the
support of large language models, and refine the control flow
by handling nodes unrelated to external data processing, focus-
ing solely on the snippet’s relevant logic. Once a vulnerability
is identified, we perform concolic analysis on the input that
triggered it. This step extracts complete constraints for the
relevant control flow nodes, enabling us to determine whether
the detected issue is a true vulnerability or a false positive. By
limiting the exploration scope to risky code snippets identified
through static analysis, our method mitigates the scalability
challenges of traditional static and symbolic execution ap-
proaches. Symbolic execution is employed selectively—either
to generate new test cases when fuzzing is stuck or to verify
crash results, ensuring efficient bug detection.

III. DESIGN

Approach Overview. In this paper, we present SFUZZ++,
a new tool for detecting vulnerabilities in RTOS-based em-
bedded device firmware using a slice-based fuzzing approach.
As illustrated in Figure 1, SFuzz++ takes firmware as input
and generates detailed bug reports as output. The process is
divided into four key stages, detailed as follows:

(1) External Input Identifier: The workflow begins by
identifying external input points. For explicit inputs, such as
data-receiving call sites, we reuse the preprocessing module
from our previous work, SFuzz. In addition, SFUZZ++ intro-
duces a new module to detect implicit inputs, including those
arising from global memory access.

(2) Code Snippet Scope Extractor: Next, the Code Snip-
pet Scope Extractor determines the relevant code snippets
associated with these inputs. While this component adopts call
graph analysis from SFUzz, we further enhance its capabilities
by adding a memory constraint retrieval mechanism. This
module supplements the original Forward Slicer, enabling the
restoration of a more complete context for subsequent analysis.

(3) Micro Fuzzer: The slice-based fuzzing engine, termed
the Micro Fuzzer, builds upon its predecessor in SFUzz. The
primary improvement here is the integration of runtime state
initialization, which allows the fuzzer to emulate a realistic ex-
ecution environment. This enhancement leads to more accurate

exploration of execution trees® and more effective handling of
complex control flow.

(4) Vulnerability Validator: Finally, the Vulnerability Val-
idator, directly inherited from SFUZzz, filters out false pos-
itives that may arise from exploration pruning or incom-
plete context. Our overall methodology remains consistent
with SFuzz, selectively integrating symbolic execution for
test generation and crash validation. This approach ensures
comprehensive bug detection while maintaining scalability.

Table I summarizes the inheritance and enhancement rela-
tionships for each component.

TABLE I: New Features Added to Each Component of SFUZZ++.
#Component represents the key functional modules in SFUZZ++.
#Enhancement indicates the new features added to each component
in SFUzz++.

Component Enhancement

External Input Identifier
Code Snippet Scope Extractor
Micro Fuzzer

Implicit Input Handling
Memory Constraint Retrieval
Runtime State Initialization

A. External Input Ildentifier

To perform slice-based fuzzing on functional snippets within
the target RTOS, the first step is to identify the various data
input points within these snippets. We categorize these points
into two types: explicit input points and implicit input points.
Explicit input points refer to call sites of functions that clearly
handle data reception or transmission, with well-defined roles
in interacting with external data sources. Examples include
functions like recv (for data reception, as shown Line 8
in Listing 1) or nvram_get (for global data sharing), which
directly manage external inputs. In contrast, implicit input
points involve data read-in operations based on hard-coded
global addresses (e.g., Line 18-19 in Listing 2). These points
are typically more difficult to detect, as they are not explicitly
designated as functions for data reception. Nevertheless, they
play a critical role in handling external data during execution.

1) Explicit Inputs Identification: Locating explicit input
points typically involves identifying the call sites of standard
data reception and transmission functions. However, this task
becomes challenging when program symbols are stripped, and
all functionality is compiled into a monolithic binary. To

3The execution tree represents all execution paths from a designated data-
receiving point, where each node corresponds to instructions that fork new
paths, such as branches and function calls.
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overcome this, we recover the semantics of these functions by
leveraging all available information and analyzing the code’s
behavior. This process primarily relies on the following four
heuristic methods.

« Symbol File & Log Function. Some vendors, such as TP-
Link, release symbol files that label function names within
the firmware. Additionally, log functions used to output
runtime errors can help recover function names. For exam-
ple, in the log statement logOutput(ostream, "devDiscover:
error, ret = %d", retcode), the function devDiscover can be
identified.

o Virtual Execution. It identifies standard library functions
through a three-step process. First, it compares the number
of arguments and the return value of the target function
with those of known standard library functions to identify
potential matches. Next, it allocates memory, initializes
register states, and sets initial argument values. Finally, it
simulates the function’s execution, analyzing output values
and affected memory regions to confirm the match.

o Web Service Semantic. We use shared strings marking user
input in front-end files (e.g., HTML, PHP, JavaScript) and
back-end code to recover the semantics of functions involved
in web services. This method is based on techniques pro-
posed in SaTC [20].

o Open Source Firmware. For RTOS systems based on open-
source projects (e.g., eCos, FreeRTOS), we can match
functions in the firmware to their counterparts in the open-
source code. After identifying the firmware version, we
use binary-to-source matching tools like B2SFinder [44] to
match functions based on strings, immediate values, and
other embedded features.

2) Implicit Inputs Identification: Unlike explicit data entry
points, implicit inputs lack clear patterns, such as recogniz-
able function symbols (e.g., recv), making it challenging to
differentiate functions that parse external data from those that
merely access global memory for other purposes. Our analysis
categorizes implicit input points into two types:

o Explicit Input Data Buffering. External inputs are first
acquired through explicit input functions and stored in a
global buffer. Data parsers subsequently retrieve these inputs
by indexing the buffer’s address. For example, in Listing 2,
external values are stored in the global memory region
0x80004000 (Line 9) and later accessed by data parsers (Line
18).

o Peripheral Input Handling. For commonly used peripherals
in the RTOS, input data is typically stored at specific
memory-mapped addresses, with storage operations man-
aged by the peripherals themselves. To facilitate access
to these external inputs, the RTOS may map peripheral
memory to a global buffer in RAM. It can then read data
by directly accessing either the addresses linked to the
peripherals or the mapped global addresses.

To identify implicit input points, we analyze the two address
types associated with these inputs and leverage large language
models to determine whether functions referencing these ad-
dresses exhibit data-parsing behavior. The process involves
three systematic steps.

1. The initial step of our analysis is to identify global
memory regions that serve as potential containers for ex-
ternal data. To this end, we analyze two primary sources
of input: explicit input function calls (e.g., recv) and
peripheral memory-mapped /O (MMIO) regions. This
process yields a GlobalCandidateSet, which comprises
global memory regions directly reachable from these
input primitives. The rationale for this approach is that
by anchoring our analysis to well-defined input sources,
the buffers identified within the GlobalCandidateSet are
strong candidates for being directly involved in handling
external data, thus ensuring their high relevance.

2. For each function referencing the global addresses in
the GlobalCandidateSet, we extract its decompiled code
along with the corresponding global data reference points.
This information is organized into a structured prompt
template (illustrated in Figure 2), which directs the large
language model (LLM) to analyze the target function’s
code. Based on this analysis, the LLM delivers a binary
judgment on whether the function demonstrates data pars-
ing semantics. Functions identified as parsing functions
("Yes") are subsequently added to the ParsingFuncSet,
along with their associated global data entries.

3. To further refine the identification of implicit input points,
we conduct a lightweight taint analysis of the func-
tions within the ParsingFuncSet. This analysis assesses
whether data read from the identified global addresses
can propagate to sensitive parameters in sink function
calls. If a feasible taint path is detected based on over-
approximated results, the corresponding global data ref-
erence points are treated as the final implicit input points.
This approach reduces the risk of false negatives and en-
hances the comprehensiveness of the subsequent analysis.

B. Code Snippet Scope Extractor

Using the identified external data entry points as root nodes,
we employ forward slicing techniques to construct an execu-
tion tree, representing a relatively independent testing unit. As
illustrated in Figure 1, the scope of the code snippet and its
context information are reconstructed through the following
key steps.

1) Sensitive Call Graph Construction: The call graph con-
structor identifies all direct callers of functions containing
external input points and uses these callers as root nodes to
construct call graphs*. To improve the efficiency of fuzzing
tests, the process retains only the branches that lead to poten-
tial sink functions (e.g., memcpy, strcpy, sprintf, etc.), while
irrelevant branches are pruned. By focusing on these sensitive
paths, the testing process more effectively targets areas with a
higher likelihood of vulnerabilities, enhancing both precision
and efficiency.

Call Graph Pruning. To determine whether external inputs
or global data influence the parameters of sink functions and to

4A call graph is a control-flow graph that represents the calling relationships
between functions in a program. Each node corresponds to a function, and
each edge (f, g) indicates that function f calls function g.
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Q: “code snippet of function wifi_config_set”

Which global variables does the function reference?

A: The function accesses global data located at address
0x80004000 and 0x80008000 at Line 21 and 22.

Q: Does the function implementation follow one of the follow-
ing patterns?

o The function validates the global data using one or more
conditions.

o The function performs sub-pattern checking using strstr-
like or strncmp-like APIs.

o The function reads global data and writes it to the local
stack using memcpy-like APIs.

A: Let’s analyze step by step:

o null_check: [Yes. The function verifies the valid-
ity of the global data at 0x80004000 through the
global_match(input, Global_func_table) condi-
tion and checks if the global data at 0x80008000 is null.

« pattern_check: No. The function does not explicitly
check for specific patterns within the data.

o substring_extraction: Yes. The function uses strncpy
to copy the content of the input variable into the stack
buffer.

Q: Based on your analysis, does the function likely parse the
global data?

A: Yes.

The function is indeed used to parse the global data at ......

Fig. 2: Simplified LLM-based Data Parsing Function Identifica-
tion. The case-specific prompts and answers are highlighted in green,
corresponding to the example in Listing 2.

refine the call graph, SFUzz++ employs lightweight, coarse-
grained taint analysis. This analysis tracks each path in the
call graph, from root to leaf, identifies the potential impact of
external inputs and global data, and filters out paths that are
independent of these influences.

The taint engine operates on each call path by analyzing
the function body of every node along the path. Parameters
or return values of explicit input functions, as well as ad-
dress reference points of implicit inputs, are marked as taint
sources based on their semantics. For instance, the parameter
Global_addr+0x1c of recvfrom in Listing 1 is treated as a taint
source, as the memory space it references stores input data.
Our lightweight taint engine operates directly on Ghidra’s P-
code, which serves as a uniform intermediate representation
(IR) to ensure our analysis is compatible across disparate
architectures. The analysis process unfolds in two main stages:
(1) IR Lifting: First, native instructions are lifted into their
corresponding P-code representations. This essential step ab-
stracts away architecture-specific details, providing a standard-
ized semantic foundation for the subsequent taint propagation
analysis. (2) Taint Propagation: The engine then processes
each P-code instruction. If any input operand is tainted (i.e.,
influenced by external inputs), the taint is propagated to its
output operands. This propagation model intrinsically handles
inter-procedural analysis: for function calls, if any parameter
is tainted, the taint is propagated to the function’s return value.
For function calls to callees outside the current call path,
the taint engine propagates taint attributes from the tainted

/*date set point*/

char *var = WebGetsVar(al, "wanPPPoEUser");
nvram_set ("wan®_pppoe_username', var);
/*data get point*/

sprintf(usename, "wan%d_pppoe_username",
char *varl = nvram_get(usename);

T VR CRN

var);

Listing 3: Code Samples for Call Graph Stitching (dynamic method).

parameters to the return value.

Finally, if any risky parameters of sink functions (e.g., the
count parameter in memcpy (*dest, *src, count)) are influenced
by external inputs, SFUZZ++ retains the corresponding call
path. This approach ensures that only relevant paths, where
external inputs could propagate to sink functions, are included
for further analysis.

Call Graph Stitching. To achieve a more comprehensive
tracking of data flow, SFUZZ++ restores missing edges that
arise from the lack of direct correlations and connects nodes
across different call graphs. Similar to KARONTE [12] and
SaTC [20], we address interruptions in external input data
flows caused by data-sharing paradigms (e.g., set_env and
get_env). This challenge is also prevalent in RTOS environ-
ments.

Unlike prior approaches, which rely solely on static anal-
ysis to splice deterministically associated nodes, SFUZzZ++
incorporates dynamic techniques to capture non-deterministic
correlations between data set and use points. (1) For data-
sharing paradigms labeled with constant strings, we identify
and match these labels based on their constant values. We then
connect the respective call paths and introduce a virtual node,
represented as a two-tuple (e.g., <nvram_set, nvram_get>),
to symbolize the paradigm in the merged call graph. (2) For
paradigms involving dynamically created variables, such as
"wan%d_pppoe_username"” in Listing 3, we use approximate
string matching to detect such variables. A virtual condi-
tion node is created to represent the potential data-sharing
paradigm. During emulation, the actual value of the variable is
used to determine whether to jump to the corresponding global
data read point. (3) When a set point corresponds to numerous
get points, SFUZZ++ constructs a virtual condition node to
manage these relationships. The jump direction is determined
probabilistically, ensuring that all potential data-sharing paths
are considered.

2) Context Information Restoration: Effective emulation
and fuzzing of code snippets rely on accurately retrieving stack
layout and initialized global data. To achieve this, SFUZz++
extracts two key types of context (i.e., local and global
context) information from the entire firmware binary. The
local context encompasses register values, stack frames, and
variable constraints that accumulate through preceding multi-
level function calls, while the global context consists of the
initialized contents of the global memory region set up during
the RTOS bootstrap process.

To extract the local context, SFUZZ++ performs lightweight
symbolic execution starting from the topmost predecessor of
a code snippet’s root node in the call graph and continuing to
the root node itself, which marks the slice-based fuzzing start
point. During this process, it records stack frame information
whenever a function is invoked along the path, facilitating
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the application of memory safety policies. At the same time,
SFuzz++ gathers register values and constraints from up-
stream paths, which are essential for configuring the fuzzing
environment and verifying vulnerability conditions. Without
the restored local context, the Micro Fuzzer may miss crashes
due to insufficient boundary information, resulting in false
negatives. For instance, in Listing 2, the size of the variable
buf, defined in the caller function wifi_config_handler (Line
13), plays a crucial role in assessing whether the strncpy
operation leads to a buffer overflow vulnerability (Line 22).

For global context extraction, SFUZZ++ focuses on identi-
fying and processing global variable initializers. A representa-
tive example is the function Global_func_table_init in List-
ing 2, which initializes the global variable Global_func_table.
This variable is later used in wifi_config_set for condi-
tion validation (Line 20). Following a similar approach to
implicit input identification, SFuzz++ leverages LLMs to
detect global variable initializers. Specifically, it establishes
a mapping between each function and the global addresses it
modifies, prioritizing write operations. Candidate functions are
then analyzed by LLMs to determine whether they perform
data initialization within the global space (as illustrated in
Figure 3). If a function is confirmed to initialize global data,
SFuzz++ leverages symbolic execution to extract constraints
related to the global variables.

C. Micro Fuzzer

To effectively perform fuzzing on the extracted code snip-
pets, SFuzz++ first processes various types of instructions
(i.e., (i) function call, (ii) conditional branch) that influence
path reachability and testing efficiency. This step ensures
smooth fuzzing operations and minimizes unnecessary path
exploration. Next, SFuUzz++ uses the stored context informa-
tion to restore the execution state required for fuzzing. Finally,
it tests the code snippets against predefined memory safety
policies to detect potential issues.

1) Control Flow Nodes Handler: Because of lacking full
context of the RTOS, we need strategies to guide the fuzzer to
determine how to handle the function call in the snippet and
choose which branch of the conditional statement to jump.

Call Instruction. We process function calls in two distinct
ways. (1) For functions whose parameters are unaffected by
external input, we add the address of their call instructions to
the PatchedFunc set and guide the fuzzer to skip these calls.
Since their arguments and return values are unrelated to input
mutations, skipping these functions reduces complexity and
enhances fuzzing efficiency without affecting test accuracy.
(2) For function calls within sensitive call graphs or with
input-dependent arguments—such as protocol_handler and
header_check in Listing 1—we retain and fully explore them.
This ensures the fuzzer can reach sensitive execution paths,
critical for effective vulnerability detection.

Conditional Branch. Conditional branches pose challenges
during fuzzing, particularly when their constraints are inde-
pendent of input data. In such cases, input mutations cannot
influence the direction of the branch, making it necessary
to apply tailored strategies to maintain testing effectiveness.

Q: “code snippet of function [Global_func_table init]” The
function references the global variable [Global func table].
Does the function implementation follow one of the following
patterns?

o The function initializes global variables.

« The function initializes global function tables by passing
function pointers to a registration function.

A: Let’s analyze step by step:

« global variable initialization: Ng. The code does not
explicitly initialize any global variables.

o global function table initialization: [Yes. The
function registers two functions via registerFunc,
using function pointers global_func_addr_® and
global_func_addr_1.

Q: Based on your analysis, does the function likely parse the
global data?

A: Yes.

The function is indeed used to initialize this global variable at

Fig. 3: LLM-based Global Variable Initializer Identification. The
case-specific prompt and answer are highlighted in green, correspond-
ing to the example in Listing 2.

Conventional fuzzers often waste cycles by indiscriminately
exploring all execution paths. To address this inefficiency, our
approach introduces a selective branch-handling mechanism
informed by static slicing. Specifically, we instrument and
control only the conditional branches that reside within the
program slice leading to the target sink. This strategy ef-
fectively prunes the fuzzer’s exploration space by steering it
away from code segments irrelevant to the vulnerability being
targeted, thereby significantly enhancing both efficiency and
effectiveness.

o Single reachable branch. If only one branch leads to the
sink function and its condition is input-dependent, we mark
the unreachable branch’s target address in the PatchedJMP
set, instructing the fuzzer to avoid exploring that branch. If
the condition is unrelated to input, we add the instruction’s
address to the PatchedJMP set and guide the fuzzer to replace
the conditional jump with a fixed jump to the reachable
branch.

o Both branches reachable. If both branches lead to sink
functions and the condition is unrelated to input, we add
the instruction’s address to the PatchedJMP set, allowing the
fuzzer to replace the conditional jump with a random jump.
If the condition is input-dependent, no changes are made,
ensuring exploration of all relevant paths.

« No reachable branches. If neither branch leads to the sink
function, the target addresses of both branches are added to
the Patched]MP set, instructing the fuzzer to terminate path
exploration upon encountering these addresses.

2) Runtime State Initialization: SFUZZ++ utilizes the con-
text information extracted in §III-B2 to accurately initialize the
runtime environment for the target code snippet. Specifically, it
assigns concrete values to registers and stack variables based
on the local context, using stack frame offsets from upper-
layer call sites to establish overflow checkpoints. Additionally,
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global data constraints are applied according to the previously
gathered global context. For variables without predefined
context constraints, SFUzZz++ initializes them with random
values to ensure comprehensive testing coverage.

3) Fuzzing Engine: The core component of our fuzzing
framework is the slice-based fuzzing technique, referred to as
micro fuzzing. This method systematically explores execution
paths within extracted code snippets while monitoring the con-
text of sink function calls and identifying crash inputs when
memory access violates predefined safety policies. The micro
fuzzing approach enhances efficiency by pruning unnecessary
paths and stabilizing the emulation process. It skips input-
irrelevant function calls, avoids executing masked conditional
branches and emulation-hard® instructions, and allocates con-
crete values to uninitialized memory references. These opti-
mizations enable the engine to concentrate on code segments
critical to handling target input data, thereby improving the
accuracy and stability of the fuzzing process.

Upon loading the RTOS firmware, the built-in image loader
preprocesses the tailored code snippets. Call instructions
marked in PatchedFuncset are replaced with NOP-like in-
structions to bypass unnecessary computations, while branches
flagged in Patched]JMPset are augmented with AvoidExplore
statements at their target addresses, ensuring termination of the
current path exploration. Branches requiring fixed or random
jumps are handled with the corresponding modifications.

During execution, the core fuzzing engine initializes the
RTOS environment and iteratively executes target code snip-
pets starting from the root node of the execution tree. Random
data is generated for input entry points, and leveraging Uni-
cornAFL [26], the engine performs coverage-guided fuzzing
and emulates instruction execution on the tailored execution
tree. To overcome situations where the engine becomes stuck,
the hybrid fuzzer invokes its concolic execution component.
This component selects a seed input, symbolizes its bytes, and
traces the corresponding execution path. It then employs a
constraint-solving engine to generate inputs that direct execu-
tion toward unexplored paths. The fuzzing process terminates
if no new path is identified within a predefined time threshold.

4) Enhanced Memory Safety Policies: Given that bare-
metal [19] and RTOS devices typically lack memory sani-
tization due to resource constraints, SFUZZ++ incorporates a
lightweight safety-checking mechanism tailored for its fuzzing
engine. This mechanism targets memory-related sink functions
by applying custom safety policies directly at their call sites.
By monitoring these critical points for violations (e.g., buffer
overflows), SFUzz++ significantly enhances its ability to
detect memory corruption vulnerabilities without imposing the
high overhead typical of full-scale sanitizers.

To detect memory bugs effectively, we classify memory
buffers into two categories: those with statically determinable
sizes and those without. Buffers with identifiable sizes include
stack buffers, dynamically allocated buffers (e.g., via malloc-
like functions), and global variables with sizes inferred from
adjacent variables. For such buffers, we check for overflows

SEmulation-hard instructions, typically related to hardware interactions or
HAL modules (e.g., CPU scheduler signals), are excluded as they do not affect
the data flow from input sources.

1 void vulnSet(webRequest* al, webRequestData* a2)
2 {
3 char *ledStatus;

4 char *ledClsTime;

5 char *ledTime;

6 char argbuf[0x100];

7

8

int ledCtlType;

ledClsTime = webVar(al, "LEDCloseTime");// Input
9 ledStatus = webVar(al, "LEDStatus"); // Other input #1
10 ledCtlType = nvram_get("led_ctl_type"); // Other input #2
11 if (strcmp(ledCtlType, ledStatus))
12 nvram_set("led_ctl_type", ledStatus);
13 if (!strcmp("2", ledStatus) ) {
14 ledTime = nvram_get("led_time"); // Other input #3
15 sub_800D487C(a2, argbuf);
16 if (strcmp(ledTime, ledClsTime))
17 nvram_set("led_time", ledClsTime); // Global data set

18 }

19 }

20 void vulnGet()

21 {

22 char v8[64];

23 memset (v8,0,sizeof(v8)); //
24 ledTime = nvram_get("led_time"); //
25 strcpy(v8, ledTime); //
26 }

Written object
Global data get
Sink

Listing 4: Code Samples for Vulnerability Validator

by determining whether the buffer boundary data is modified
after executing the sink function.

For buffers with indeterminate sizes, we first check whether
the variable resides on the stack and appears in the recovered
local context. If so, the restored stack frame information is
used to validate the current sink point. Otherwise, an alarm is
triggered, and the issue is further analyzed for satisfiability in
the subsequent Vulnerability Validator module.

D. Vulnerability Validator

When the Micro Fuzzer detects potential overflows or
other alarms, the Vulnerability Validator analyzes the crash-
triggering inputs to confirm if they represent genuine vulner-
abilities. It uses these inputs as concrete values to guide con-
colic execution along the corresponding paths for constraint
solving.

As the pruned function calls (in PatchedFuncset) and
conditional branches (in PatchedJMPset) have already changed
context in the original execution tree, we must check whether
a crash input triggers a real vulnerability in the original
firmware. To conduct this check, the validator first restores the
patched code sections. It then symbolizes all parameters and
return values at the patched function call sites and conducts
concolic testing by combining forward and backward slicing.

As illustrated in Algorithm 1, the workflow consists of two
stages: the Forward Slicing-Based Concolic Tester analyzes
the execution path from input to sink (Line 6, 20-25, and
27), while the Backward Slicing-Based Condition Verifier
refines constraints and validates object sizes (Line 9-18).
We demonstrate this process using CVE-2021-32186, a stack
buffer overflow caused by improper handling of NVRAM data.
As shown in Listing 4, when the web variable ledStatus is
equal to 2 (Line 13), the ledClsTime variable is written to
NVRAM using nvram_set at Line 17. Subsequently, in the
function vulnGet, this value is retrieved via nvram_get and
copied to the stack without any size checks, triggering the
buffer overflow (Line 25).

1) Forward Slicing-Based Concolic Tester: The forward
slicing phase begins with a crash input and uses concolic
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Algorithm 1 The workflow of Vulnerability Validator.

1: function VULNERABILITY VALIDATOR(CrashInput, RTOS)
2 Trace <— TRACER(CrashInput, RTOS)

3 TargetSink <— GETSINKPOINT(Trace)

4: CompletePoC «— 0

5: State <— SIMULATIONSTART(RTOS)

6 State. ADDCONCRETECONSTRAINTS(CrashInput)

7 while State.active do

8 if ISTARGETSINKFUNC(State, TargetSink) then

> State still satisfies all constraints

StateConstraints <— BACKWARDSLICING(State). CONSTRAINTS()
10: for constraint € StateConstraints do
11: if RESYMEXEC(RTOS, constraint.invert(), CrashInput, TargetSink) then
12: StateConstraints.remove(constraint)
13: end if
14: end for
15: if SINKBUFFERDETERMINABLE(StateConstraints) then
16: OuTPUTCOMPLETEPOC(StateConstraints, CrashInput, RTOS)
17: return
18: end if
19: else
20: if State € PatchedFuncset then
21: SymValues <— SYMRETVALUE(State) | J SYMARGS VALUE(State)
22: State. ADDNEWS YMBOLS(Sym Values)
23: else if State € PatchedJMPset then
24: State.SETJUMPDIRECTION(Trace)
25: end if
26: end if
27: State.STEP() > Step to next concolic state
28: end while
29: OUTPUTFAILEDINFO(CrashInput, RTOS) 1> State cannot reach sink

30: end function

execution to trace the path from the input entry point to the
sink function. It collects path constraints, including symbolic
expressions for function parameters and return values from
other input-reading functions®. When encountering patched
functions (i.e., those in PatchedFuncset), their arguments and
return values are symbolized to maintain analytical precision.

In the case of CVE-2021-32186, the entry point is at Line
8, and the sink function is the call to nvram_set at Line 17.
Forward slicing traces the path from Line 8, collecting path
constraints related to other inputs at Line 9, 10, and 14. These
constraints are then incorporated into branch conditions along
the path, such as those at Line 11, 13, and 16.

2) Backward Slicing-Based Condition Verifier: Backward
slicing initiates from the sink function and traces the execution
path in reverse to achieve two goals: optimizing the path
predicate of other inputs and validating the size constraints
of objects written by the sink. By inverting each predicate
of constraints one by one, (i.e., the web variable ledStatus
is equal to 2 or not at Line 13), and rerunning symbolic
execution, it assesses whether these constraints related to other
inputs are essential for reaching the sink, discarding those that
are not. Meanwhile, memory constraints for objects at the sink
are verified to mitigate false positives.

For the details in CVE-2021-32186, backward slicing starts
at the sink (nvram_set at Line 17) and traces back to identify
constraints associated with other inputs (Line 9, 10, and
14). It then individually inverts these constraints and reruns
symbolic execution to check satisfiability. If the sink remains
reachable, the corresponding constraint is deemed unnecessary
and discarded. Ultimately, this process discards the constraint
at Line 11 while retaining those at Line 13 and 16.

The backward slicing phase also validates buffer size con-
straints at the final sink point. In vulnGet, we start from the

SHere, "other input" refers to external data unrelated to the crash input.

identified memory operation (Line 25) and trace back to the
relevant memory allocation site (e.g., the stack frame setup for
vulnGet). Using symbolic execution, the analyzer calculates
the allocated size for the destination buffer and compares it
with the symbolic size of the incoming data to determine if
an overflow can occur.

IV. IMPLEMENTATION

We implement the prototype system of SFuzz++ with
around 10,800 lines of Python code, 4,600 lines of C code, and
5,100 lines of Java code. The external input identifier and code
snippet scope extractor are implemented using Ghidra [39]
and LLM. Our fuzzing engine is built on UnicornAFL and
Driller [30]. For context information restoration and vulner-
ability validation, we utilize Angr [41]. We extended Driller
to support RTOS images by re-implementing its trace logger
with a custom RTOS loader, enabling effective tracking of
execution traces for the target code snippets. Our system is
based on several basic procedures as follows:

Image Extraction. We leverage strings embedding in the
firmware to identify the type of RTOS (e.g., VxWorks 5.5.1)
and leverage BinWalk to extract the content of the RTOS
image. Meanwhile, for disassembling the content, we use the
feature of the machine code in the image to determine the type
of CPU architecture (e.g., MIPS).

Base Address Recognition. Because many data reference or
function call operations in RTOS systems are dependent on the
base address, and wrong addresses will result in incorrect data
references or control flow jumps. We implemented this part
based on the core idea that only the correct base address can
link the most data reference pointers with the intended targets.
The method is proposed in Vxhunter [17] and used in some
related works, such as FirmXRay [18]. This module contains
two steps to recognize the base address. It first identifies and
extracts the data reference pointers from the system; secondly,
it matches the absolute address of the data pointers with the
intended targets. It should be claimed that (i) we utilize both
string pointers and function addresses to help recognize the
base address, which yields relatively better results (as shown
in §V-C). (ii) we implement this method based on PCode,
which is Ghidra’s intermediate representation for assembly
language instructions, instead of the instructions of a specific
architecture. Therefore, it could support more architecture.

Global References Analysis. To obtain the comprehensive
reference information needed for implicit inputs identification
and global context restoration, we implement global references
analysis. Since RTOS firmware is often stripped binaries and
does not contain areas like RAM, relevant analysis tools such
as Ghidra are unable to automatically analyze the reference
relationships in these sections. Before indexing global ad-
dresses, assembly code typically uses computational instruc-
tions (e.g., addiu, 1dr) to update the actual address values in the
registers. Based on this observation, we perform lightweight
state simulation at the instruction level using Ghidra, updating
the register states for specific computational instructions and
checking whether the updated values correspond to potential
RAM segment addresses. Through this process, we establish
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TABLE II: Dataset of device samples. We selected 35 device samples
from 11 vendors, including router, firewall, printer, switch and BCI
on four architectures. Size represents the sum size of the samples
collected from the corresponding vendor before unpacking.

Vendor Type Series oS #  Size Architecture
Sonicwall Firewall TZ/SOHO VxWorks 2 153M  MIPS(BE)

RIOCH Printer SP/AficioSP  VxWorks 4 41M ARM(LE)

Xerox Printer WC/Phaser  VxWorks 4 66M ARM(LE/BE)/MIPS(BE)
CISCO Switch ~ SG VxWorks 1 ™ ARM(LE)

Linksys Switch LG VxWorks 1 ™ ARM(LE)

Tenda Router AC eCos 7 14M MIPS(LE/BE)

FAST Router FAC/FW eCos 3 4M MIPS(LE)
MERCURY  Router MW/M/D VxWorks 3 6M ARM/MIPS(LE)
TP-Link Router ~ WDR VxWorks 6 1IM  ARM(LE)/MIPS(BE)
D-Link Router DIR eCos 3 3M MIPS(LE/BE)
Vendor* BCI BCI_V1 FreeRTOS 1 2M ARM LE

Total 5 17 3 35 314 4

a mapping between functions and global data, enabling us to
identify implicit inputs and restore the global context.

V. EVALUATION

For evaluation of our approach, we should answer the
following research questions:

« RQ1. How effective is SFUZZ++ in discovering real-world
vulnerabilities across diverse RTOS-based embedded de-
vices? (§V-A)

« RQ2. How does SFuzz++ perform compared to state-of-
the-art fuzzing approaches in RTOS vulnerability detection?
(§V-B)

« RQ3. What is the contribution of each SFUZZ++ compo-
nent to vulnerability discovery in terms of accuracy and
efficiency? (§V-C)

Dataset. As shown in Table II, we collected 35 firmware

samples from 17 series in 11 vendors. These devices cover

three RTOS types and supply various services, including 23

routers, seven printers, two firewalls, two switches, and one

BCI (Brain-Computer Interface). Among these samples, seven

devices adopt the MIPS-BE architecture, 13 adopt the MIPS-

LE architecture, and one adopts the ARM-BE architecture,

while the other 14 use the ARM-LE architecture. On average,

each firmware is 9 megabytes, and SFUZZ++ processed up to

314 megabytes in total.

Environment Setup. Our experiments run on a Ubuntu 22.04

host with a RAM of 256 GB and a 32-core Intel Xeon

Processor of 2.4 GHz. Especially, we set the time limit for

the fuzzing part of each experiment to be six hours when

handling one data entry point and operated each experiment
with one CPU core. According to our observation, none of the
experiments could find new paths or crashes after this timeline.

Bug Confirmation. Each alert produced by SFuzz++ con-

tains a unique crash input from the source point and symbolic

expressions for the path constraint, which may include other
data sources or global variables. We manually verified each

alert, and only it can result in a real bug we consider it is a

vulnerability.

A. Real-world Vulnerabilities
SFuzz++ found 82 new bugs’ in 20 firmware samples of

7All bugs are listed at https://github.com/NSSL-SITU/SFuzz_Pro/blob/m
ain/rw_vuls.md.
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Fig. 4: Statistics of Input Receiving Points types and Service
Protocols types corresponding to the real-world vulnerabilities.

TABLE III: Experiment configurations. ¢ indicates feature enabled;
X means feature disabled. FuncCall represents function call Instruc-
tion, CBranch represents conditional branch.

Symbolic Handler for Handler for Environment

Experiment Execution FuncCall CBranch Recovery
UnicornAFL X X X v
SFuzz++-H v X X v
SFuzz++-FH 4 X v v
SFuzz++-CH v v X v
SFuzz++-DH X v v v
SFuzz v v v X
SFUZZ++ v v v v

different devices, including router, printer, firewall, and BCI.
By the time of submission, all of them have been confirmed
by the vendors, and 78 have been assigned CVE or CNVD IDs
(54 CVE and 24 CNVD, 64 are high severity); 3 bugs are still
under review. Figure 4 shows the types of data receiving points
and tasks of the snippets that correspond to these bugs. In
detail, these bugs exist in many different tasks, such as HTTP,
UDP, and Bluetooth. Moreover, the input data comes from
several data sources, such as Web parser, NVRAM handler,
and Socket handler. Additionally, we list detailed case studies
of revealed bugs in our dataset®.

B. Comparison with Existing Methods

To answer RQ2, we compare SFUzZz++ with exist-
ing vulnerability detection approaches. We first implement
UnicornAFL [26] as our baseline, enhancing its program loader
to support RTOS firmware analysis. Due to direct compati-
bility issues with RTOS environments, we adapt two state-
of-the-art methods: T-Fuzz [33] and Driller [30]. Specifically,
we implement SFUZz++-FH to represent T-Fuzz’s conditional
branch handling strategies, and SFuzz++-H as an adaptation
of Driller’s approach for code fragment execution. To complete
our comparative analysis, we also evaluate SFUzz++-CH,
which exclusively handles function call instructions. To sys-
tematically evaluate our contributions, we assess three config-
urations. We use our prior work, SFuzz, as the baseline, which
represents the system without our new environment recovery
components. To measure the impact of symbolic execution-
guided fuzzing, we also evaluate SFUzz++-DH, a version of
SFuzz++ with its concolic execution capabilities disabled.

8 https://github.com/NSSL-SITU/SFuzz_Pro/blob/main/cases
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TABLE IV: Compared with other tools. #Path represents the
number of paths that can be discovered by each tool. #ExecTree
represents the number of the execution trees that contain crashes.
#CrashInput represents the number of inputs resulting in unique
crashes. #Bug represents the number of real-world bugs that can be
discovered.

Mode Device #Path #ExecTree #CrashInput #Bug
Tenda AC11 284 3 3 2
TP-Link WDR7660 1,599 3 192 2
UnicornAFL RICOH SP221 36 0 0 0
FAST_FAC1200R_Q 906 2 17 2
MERCURY_M6G 56 0 0 0
Total 2,881 8 212 6
Tenda AC11 288 3 3 2
TP-Link WDR7660 3,158 3 764 2
SFuzz++-H RICOH SP221 37 0 0 0
FAST_FACI200R_Q 1,230 2 22 2
MERCURY_M6G 59 0 0 0
Total 4,772 8 789 6
Tenda AC11 273 4 6 2
TP-Link WDR7660 1,675 4 533 3
SFuzz++-FH  RICOH SP221 533 0 0 0
FAST_FACI200R_Q 1,543 5 35 3
MERCURY_M6G 148 0 0 0
Total 4,172 13 574 8
Tenda AC11 1,024 17 62 14
TP-Link WDR7660 5,050 5 1,054 4
SFuzz++-CH  RICOH SP221 33 0 0 0
FAST_FACI200R_Q 1,553 3 60 3
MERCURY_M6G 51 0 0 0
Total 7,711 25 1,176 21
Tenda AC11 1,476 23 316 14
TP-Link WDR7660 635 4 13
SFuzz++-DH  RICOH SP221 239 1 29 1
FAST_FACI200R_Q 1413 5 36 3
MERCURY_M6G 117 0 0 0
Total 3,880 33 394 21
Tenda AC11 1,793 25 337 25
TP-Link WDR7660 4,506 19 1,354 2
SFuzz RICOH SP221 449 2 390 2
FAST_FACI200R_Q 2,081 45 339 3
MERCURY_M6G 123 4 33 2
Total 8952 95 2,453 34
Tenda AC11 1,305 31 339 27
TP-Link WDR7660 737 19 147 6
SFuzz++ RICOH SP221 200 2 38 2
FAST_FACI200R_Q 1,672 45 304 7
MERCURY_M6G 133 4 23 2
Total 4,047 101 851 44

Finally, SFuzz++ represents our full system, integrating the
enhanced environment recovery, selective branch handling, and
symbolic execution into a comprehensive fuzzing framework.
The comparison of different approaches is shown in Table III.

All approaches operate on identical original execution trees’
from the initial state, with each implementing its specific
strategies. For our evaluation, we selected five representative
firmware images, each from a different RTOS vendor, to
ensure comprehensive testing. We assess SFUzZz++ against
six other baseline and variant fuzzers: SFuzz, SFuzz++-DH,
SFuzz++-H, SFuzz++-FH, SFuzz++-CH, and Unicor-
nAFL. Our analysis focuses on three key dimensions: effec-
tiveness, stability, and efficiency.

Effectiveness. As shown in Table IV, all 7 tools can find

9 An original execution tree comprises all paths originating from an external
data entry point (instruction) in the target RTOS.

vulnerabilities in real devices to a certain extent, ranging from
6 to 44. Both UnicornAFL and SFuUzzZ++-H can only find
bugs from 8 execution trees, and UnicornAFL only explored
2,881 execution paths. Although SFuzz++-H explored 4,772
paths with the assistance of Driller, it still failed to effectively
identify new vulnerability paths. When we applied Cbranch
patch on the basis of SFuzz++-H (i.e., SFuzz++-FH or T-
Fuzz), the path exploration remained largely consistent, and we
identified only two additional bugs from 13 execution trees.
When we applied the FuncCall patch to SFuzz++-H (ie.,
SFuzz++-CH), we can see that the number of explored paths
increased by 62% to 7,711, and the actual number of bugs that
increased by 250% to 21. Our complete method, combining
the above modes, discovers 44 bugs across 5 models and
outperforms all compared tools. In SFuzz++-DH, where
the concolic execution component was disabled, crashes were
found in only 33 execution trees, along with a significantly
lower number of explored execution paths. This result un-
derscores the critical role of concolic execution in enhancing
path exploration and, consequently, vulnerability detection.
Conversely, when the environment recovery component was
disabled, SFuzz explored a slightly higher number of paths
than SFUZZ++ and found a similar number of crashes. How-
ever, manual verification revealed this higher path count to
be deceptive. We found that the lack of proper environment
initialization led to execution errors that incorrectly diverted
the control flow into code segments that are unreachable in
a valid run. As a result, while SFuzz’s path count was
inflated, its ability to find unique, real-world vulnerabilities
was not improved, demonstrating the importance of accurate
environment modeling.

Stability. To compare the stability among these tools, we
examined the successful simulation ratios across all function
call trees on five devices. The results indicate that the sta-
bility varies significantly among different devices and tools'’.
Both UnicornAFL and SFuzz++-H exhibited relatively low
stability across all firmware. In comparison, CHandler (which
handles conditional branches) improved stability to some ex-
tent for all firmware. Additionally, FHandler (which manages
function call instructions) produced more variable results. In
detail, the stability of the Tenda AC11 increased from 17.02%
(using SFuzz++-H) to 59.57% (using SFuzz++-CH), while
TP-Link WDR7660 experienced a slight decline. Therefore,
SFuUzzZ++ combines both FHandler and CHandler, allowing
it to maintain satisfactory stability. Meanwhile, SFUZZ and
SFuzz++-DH also combine FHandler and CHandler, achiev-
ing results similar to SFUZzZ++.

Efficiency. When checking time consumption in these five
tools, we find that the more complicated methods are applied,
the more time is spent on testing. The experiment result'!
demonstrates the average fuzzing time different tools spend on
each device. In terms of processing time per execution tree,
our tools show a clear trend related to analytical depth. On
average, the times were: UnicornAFL (598s), SFuzz++-DH
(781s), SFuzz++-H (830s), SFuzz++-CH (869s), SFuzz

10 https://github.com/NSSL-SJTU/SFuzz_Pro/blob/main/success_rate.md.
11 https://github.com/NSSL-SITU/SFuzz_Pro/blob/main/avg_time.md.
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TABLE V: Performance of the static analysis part. #CG represents the number of input-related call graphs. Rate.Func represents the ratio
of the number of functions in the call graphs to the total functions. Rate.Call represents the proportion of the function call instructions
handled by SFuzz++ in call graphs. Rate.CJImp represents the proportion of the condition branches handled by SFUZz++ in call graphs.
TRate.Call represents the proportion of the function call instructions (handled by SFuzz++) triggered in fuzzing. TRate.CJmp represents
the proportion of the condition branches (handled by SFuzz++) triggered in fuzzing.

Vendor Model #CG Rate.Func Rate.Call Rate.CJmp TRate.Call TRate.CJmp Time
D-Link DIR100 10 2%(49/2507) 83%(213/257) 21%(48/225) 18%(38/213) 11%(1/9) 38.9
D-Link DIR613 62 6%(228/4059)  95%(7859/8311)  6%(298/5341) 6%(442/7859) 7%(5/72) 3230.5
FAST FACI200R_Q 77 3%(312/9719)  74%(2653/3575)  50%(1088/2206)  4%(94/2653) 7%(32/454) 811.3
MERCURY M6G 7 1%(138/11588)  76%(613/806) 24%(173/720) T%(42/613) 14%(17/120)  331.6
RICOH SP 221 6 2%(421/19134)  65%(1497/2313)  27%(732/2718)  2%(24/1497) 0%(0/596) 846.39
RICOH SP 330 1 0%(27/36112)  87%(65/75) 12%(6/49) 9%(6/65) 50%(1/2) 36.02
TP-Link WDR7660 34 0%(158/9425)  89%(1208/1363) 43%(338/788) 10%(117/1208)  14%(17/123)  2380.84
TP-Link WDR7661 33 2%(151/9152)  89%(1178/1326)  42%(325/766) 10%(123/1178)  16%(19/117)  2314.34
Tenda AC6V2 49 3%(212/7164)  94%(6204/6566)  9%(329/3484) 35%(2149/6204)  38%(30/78) 806.83
Tenda AC8 47 3%(224/8531)  95%(5885/6226) 10%(327/3276)  6%(327/5885) 11%(9/81) 604.16
Tenda ACl11 47 3%(219/8554)  95%(5867/6206) 10%(327/3259)  9%(502/5867) 14%(11/81) 956
Average - 34 2.34% 85.37% 23.11% 10.32% 16.59% 11234

(1,551s), and finally, the full SFuzz++ system (1,809s).
This data shows that while SFUzz++ requires more time,
its overhead is a direct consequence of its deeper analysis
capabilities. Considering its superior vulnerability detection
rate, this additional time constitutes a reasonable trade-off for
significantly improved effectiveness.

C. Accuracy and Efficiency

In this section, we evaluate the accuracy and efficiency
of each part of SFUzz++, including External Input Iden-
tifier(i.e.,Semantic Reconstruction and Implicit Input Identi-
fication), Code Snippet Scope Extractor, Micro Fuzzer, and
Vulnerability Validator.

Semantic Reconstruction. Among our dataset, 31 samples
can be analyzed by SFuzz++. The base address recognition
model successfully identifies all the base addresses of the
31 firmware samples, while SFuzz can recognize only 25.
Through verification using symbol tables and manual effort,
we found that most of the semantics automatically recovered
by SFUZz++ are accurate, and the cross-validation accuracy
rate is more than 90%. In detail, the semantics of seven
models were recovered via the symbol file recovery method.
The web service semantic recovery method recognized the
semantics of web input functions of seven Tenda devices. The
virtual execution method can be used to restore the semantics
of 24 samples. Eight models use the log function patterns
to restore their function semantics. Especially in RICOH-
SP330 (a printer), SFuzz++ finds only one user-input data
reading function (i.e., os_file_get). Hence it only extracts one
corresponding sensitive call graph. Additionally, we present a
list of all revealed Input Sources and Sink Functions in our
dataset'?.

External Input Identifier. We selected four firmware from
the experimental set that can pinpoint implicit input points as
the dataset for this part, while other firmware were difficult to
locate due to insufficient function symbolic information. As
shown in Table VI, we identified a total of 20 implicit input
points across four firmware samples, with a minimum of 5

12 https://github.com/NSSL-SJTU/SFuzz_Pro/blob/main/source_sink.md

TABLE VI: Performance of Implicit Inputs Identification.
#Implicit represents the number of implicit input points found
in binary. Parse represents the ratio of functions used for parsing
implicit input to functions that reference implicit points. #Parse.FP
represents the number of false-positive cases. #Parse.FN represents
the number of false-negative cases. #Tree represents the number of
execution trees that originate from implicit input in parsing functions.
Bugs represents the ratio of the number of bugs from implicit inputs
to the number of bugs from explicit input points.

Vendor  Model #Implicit Parse #Parse.FP #Parse.FN #Tree Bugs
D-Link  DIR100 5 23%(6/26) 1 3 2 0/1
FAST FACI1200R_Q 7 30%(9/30) 1 2 6 4/3
TP-Link WDR7660 4 35%(9/26) 0 1 5 42
TP-Link WDR7661 4 31%(8/26) 0 1 5 4/2
Total - 20 29.63% 2 7 18 12/8

and a maximum of 7 implicit input points per sample. With
the assistance of the LLM, we identified 32 potential parse
functions related to these input points out of a total of 108
functions that reference them, representing a ratio of 29.63%.
On average, the cost of using the LLM (calculated using the
official pricing for GPT-40) per firmware is $0.1809. Our
manual review of the LLM’s judgments revealed 2 false posi-
tives and 7 missed detections, primarily due to the challenges
in firmware analysis without detailed symbol information.
The accuracy of LLM analysis is heavily influenced by the
quality of Ghidra’s decompilation results, where variable and
function names often lack meaningful characteristics. This
leads to two main types of errors: false positives occur when
the model misclassifies functions as parsing functions based
solely on their global variable access patterns, while false
negatives arise from the model’s difficulty in accurately tracing
data flow within larger, complex functions. Our experiment
with function name recovery using external symbol tables for
wdr7660 and wdr7661 supports this observation: these two
samples accounted for only two errors, whereas the remaining
samples, which contained relatively few function symbols,
had seven errors. This demonstrates the impact of symbol
information quality on LLM performance.

We extracted a total of 18 new execution trees and dis-
covered 12 actual bugs caused by the implicit input points,
compared to 8 bugs found through explicit input points in these
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TABLE VII: The result of Global Context Extraction. #GVar
represents the number of global variables related to execution trees
found by the Code Snippet Scope Extractor. Init represents the ratio
of the number of initialization functions confirmed by the LLM to
the number of functions that reference related global variables. #Func
represents the number of initialization functions that successfully
extracted global variables. #CVar represents the number of global
variables successfully restored.

Vendor Model #GVar Init #Func #CVar
D-Link DIR100 28 35%(19/55) 0O 0
D-Link DIR613 19 48%(10/21) 8 9
FAST FACI200R 16 53%(85/160) 51 51
MERCURY M6G 20 48%(88/183) 53 56
RICOH SP 221 13 28%(19/68) 15 32
RICOH SP 330 0 0%(0/0) 0 0
TP-Link WDR7660 93 38%(41/109) 23 22
TP-Link WDR7661 72 36%(39/108) 19 20
Tenda AC6V2 52 68%(54/79) 26 19
Tenda AC8 54 63%(48/76) 22 16
Tenda ACl11 54 63%(47/75) 21 18
Total - 421 48.18% 238 243

firmware samples. The numerical comparison between implicit
and explicit input-related vulnerabilities indicates the necessity
of including implicit input points in firmware vulnerability
analysis.

Code Snippet Scope Extractor. To review the efficiency
of the slicing method, we need to compare the size of our
slices with the entire binary and check how many function
call instructions and condition branches are handled in our
slices, and in these handled positions, how many sites will
be triggered in the following fuzzing process. As shown in
Table V, the ratio of the number of functions in the sliced
call graphs to the total functions is 2.34% on average. Thus,
it shows that our slices are small enough to save analysis
effort. In these call graphs, the proportion of the function
call instructions and condition branches handled is 85.37%
and 23.11% on average. Moreover, 10.32% and 16.59% of
handled call instructions and condition branches are triggered
in the subsequent fuzzing process. Thus, it proves these pruned
sites are necessary and indeed make efforts in the following
process.

Context Information Restoration. As shown in Table VII,
the Code Snippet Scope Extractor successfully identified 421
global variables related to the call graphs obtained through
slicing methods. Additionally, the component extracted 450
potential variable initialization functions from 934 functions
referencing these variables using LLM, achieving a 48.18%
proportion, with an average cost of $0.1953 per firmware.
Due to the lack of symbols in most firmware, manual analysis
results may be inaccurate. Therefore, we conducted an analysis
of false negatives and false positives only on the WDR7660
and WDR7661 firmware, where we successfully recovered
function name information using external symbol tables. A
total of 217 functions were assessed in these two firmware,
resulting in 6 false negatives (2.76%) and 17 false positives
(7.83%). The reasons for these errors are similar to those in the
implicit input identification section: false positives occur when
the model incorrectly interprets variable access as assignment,

TABLE VIII: The result of Micro Fuzzing. #Tree represents the
number of execution trees which are found by the Code Snippet
Scope Extractor. #VTree represents the number of the execution trees
that contain crashes. Avg.Time represents the average time Micro
fuzzing spends on one execution tree. Total Time represents the total
time Micro fuzzing spends on one model. Total Paths represents the
number of all explored execution paths.

Avg. Total Total
Vendor Model #Tree #VTree Time Time Paths
D-Link DIR100 10 9 1,149.23 10,343.03 135
D-Link DIR613 62 45 837.12 37670.50 1,243
FAST FAC1200R 77 45 2,648.25 119,171.40 1,672
MERCURY M6G 7 4 5684.83  22,739.31 133
RICOH SP221 6 2 1941.77 3883.53 200
RICOH SP330 1 1 640.41 640.41 38
TP-Link WDR7660 34 19 431449  81,975.27 737
TP-Link WDR7661 33 18 4,228.66  76,11595 5252
Tenda AC6V2 49 40 1195.66  47,826.31 3,533
Tenda AC8 47 35 1,490.50  52,167.59 1,757
Tenda ACl11 47 31 1,808.90  56,075.94 1,305
Total - 373 249 - 508,609 16,005

TABLE IX: Compared with SFUZZ++-CONTEXT. #Tree repre-
sents the number of input-related call graphs. #VTree++ represents
the number of the execution trees that contain crashes for SFUZZ++.
#VTree represents the number of the execution trees that contain
crashes for SFUZZ++-CONTEXT. #FN represents the number of false-
negative cases of SFUZZ++-CONTEXT. #FP represents the number of
false-positive cases of SFUZZ++-CONTEXT.

Vendor Model #Tree #VTree++ #VTree #FN #FP
D-Link DIR100 10 9 9 0 0
D-Link DIR613 62 45 44 2 1
FAST FAC1200R 77 45 45 1 1
MERCURY M6G 7 4 4 0 0
RICOH SP 221 6 2 2 0 0
RICOH SP 330 1 1 1 0 0
TP-Link WDR7660 34 19 19 2 2
TP-Link WDR7661 33 18 18 2 2
Tenda AC6V2 49 40 31 9 0
Tenda AC8 47 35 27 8 0
Tenda ACI11 47 31 25 8 2
Total - 373 249 225 32 8

while false negatives arise from the model’s challenges in
accurately tracing data flow, particularly in cases of variable
aliasing. Ultimately, we successfully recovered 243 global
variables from 238 initialization functions, showcasing the
effectiveness of this component.

Micro Fuzzer. In Table VIII, the Code Snippet Scope Extrac-
tor of our tool can find 373 unique execution trees that could
introduce bugs among 11 different models. The Micro Fuzzing
engine identifies 249 execution trees with vulnerabilities and
constructs crash inputs corresponding to these potential bugs.
The average analysis time on one execution tree varies from
less than 10 minutes to over one hour. And the total analysis
time for one model ranges from 10 minutes to 33 hours,
depending on the complexity of the execution trees to explore.

Runtime State Initialization. To evaluate the impact of
runtime state initialization, we compared the testing results
of SFUZzZ++ and SFUZZ++-CONTEXT. As shown in Ta-
ble IX, SFuzZz++, with runtime state initialization, discovered
249 execution trees containing crashes in the dataset, while
SFuzz++-CONTEXT, using basic state setup, identified 225
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1 struct ElementFun { // Global Function Table Member Definition
2 uint32_t type;

3 uint32_t index;

4 uint32_t priority;

5 uint32_t callback;

6 1;

7 int parse_discovery(uint8 *payload, int payloadLen) {

8 char buffer [64];

9 char* dst;

10 int start_idx;

11 bool validcheck;

12 struct ElementFun * elementfunc_table;

13 struct ElementFun * current_elementfunc;

14 msg_element * element ;

15 msg_element_header * element_header ;

16 start_idx = (payload == 0) || (payloadlLen == 0);

17 elementfunc_table = (struct ElementFun *)0x40612C58;
18 for (int i = start_idx; i < 9; i++) {

19 current_elementfunc = &elementfunc_table[i];

20 validcheck = (current_elementfunc->type == 0 ||

21 current_elementfunc->priority == 0);

22 if (!validcheck) { // Global Env Check

23 element = parse_msg_element(payload, payloadLen);

24 element_header = element->header;

25 if (element_header) {

26 dst = buffer + current_elementfunc->index;

27 if (copy_msg_element ((char *)element->data, dst,
element_header->len)) == 0) // Stack Overflow

28 return SUCCESS;

29 }

30 }

31 }

32 return ERROR;

33 }

Listing 5: Code Samples for Global Environment Recovery

execution trees. The difference resulted in 32 missed detec-
tions and 8 false positives in SFUZzZ++-CONTEXT. Manual
examination of the divergent execution trees revealed that
these errors were primarily due to missing environmental
information. The following two case studies demonstrate how
global context gap and local context gap led to these errors.
Case Study. False Negative from Global Context Gaps
Listing 5 shows a simplified snippet that contains a buffer
overflow error in Line 27. This function is located in one
of the traces related to the vulnerability CVE-2020-28877
in TP-Link WDR7660. As shown in Listing 5, the function
parse_discovery receives external input obtained from the
upper-level function through the parameter payload. Upon
entering the function body, the first step is to check the validity
of the parameters, which determines the starting index for
subsequent loops (Line 16). The function then accesses the
global function table, func_table (Line 17), initialized during
the system startup phase, and sequentially verifies the validity
of its members (Line 22). If valid members are identified,
the function uses them to parse external input, ultimately
leading to a stack overflow. (Line 27). In the two traces related
to vulnerability CVE-2020-28877, only the trace containing
this function checks the global environment. However, due to
SFuzz++-CONTEXT’s lack of relevant environment settings,
it cannot effectively bypass the checks within the function.
Although SFUZZ++-CONTEXT attempts to use control flow
nodes to navigate around conditional jumps, both subsequent
branches of the validation condition (Line 22) present potential
sink points, where even if validation fails, it is still possible
to reach a sink point by continuing the loop. Additionally, the
global function table members that this condition relies on are
indexed based on external input, which determines the starting
index (Line 16). As noted in III-C1, SFUZZ++-CONTEXT
does not handle such branching statements, resulting in false

1 int tftpcUploadFile() {
char pbuffer[512];

int fd = socket (AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in src_addr;
if (bind(fd, &src_addr, sizeof(src_addr)) == -1)

return -1;
tftpSendFile(src_addr, pbuffer,
return 1;

fd);

N O v AW

9}

10 int tftpSendFile(int src_addr, char *pbuffer,
11 char cbuffer[512];

12 int addr_len = sizeof (struct sockaddr_in);

int fd) {

13 if (recvfrom(fd, cbuffer, 512, 0, &src_addr, &addr_len) < 4)
14 return -1;
15 memcpy (pbuffer, cbuffer, 512);

16 return 1;

17 }

Listing 6: Code Samples for Local Environment Recovery

TABLE X: The result of Vulnerability Validator. #0I represents
the number of other inputs in PoC results. #Alert represents the bug
number verified by Concolic Analyzer. #FP represents the number
of false-positive cases. #FN represents the number of false-negative
cases. #Bugs represents the number of real bugs. Avg.Time represents
the average time spent on concolic testing.

Vendor Model # Avg.
Alert OI FP FN Bugs Time(s)
D-Link DIR100 7 0 3 1 5 119.56
D-Link DIR613 22 6 9 0 13 94.58
FAST FAC1200R 4 11 1 4 7 653.16
MERCURY M6G 3 0 1 1 3 3,616.25
RICOH SP221 2 0 0 0 2 19.50
RICOH SP330 2 0 0 0 2 12.0
TP-Link WDR7660 3 0 0 2 5 2,351.74
TP-Link WDR7661 2 0 0 2 4 2,370.44
Tenda AC6V2 24 14 4 1 21 226.88
Tenda ACS8 28 20 3 2 27 444.57
Tenda ACl11 28 16 3 2 27 605.81
Total - 125 67 24 15 116 -

negatives. In contrast, SFUzz++ leverages global context re-
covery to satisfy the checks, thus identifying the vulnerability.
Case Study. False Positive from Local Context Gaps
Listing 6 shows a false positive from SFUZZ++-CONTEXT
due to local context gaps. In the tftpcUploadFile function, a
socket connection is first established, and then socket-related
parameters along with pbuffer are passed to the child function
tftpSendFile (Line 7). The tftpSendFile function begins by
using the recvfrom function to receive external data (Line
13), which is stored in cbuffer. It then parses this data and
copies the contents of cbuffer into pbuffer (Line 15). Because
this operation is subject to length constraints, there is no risk
of stack overflow. However, SFUzz++-CONTEXT lacks con-
textual information about the parent function tftpcUploadFile,
leading it to misinterpret the operation at the sink point as a
write to an unknown address, resulting in a false positive. In
contrast, SFUZZ++ utilizes local context recovery to restore
function context, thereby eliminating this false positive.

Vulnerability Validator. Micro Fuzzing module ignores other
input data that may influence the execution path of bugs, and
the patched control flow nodes may affect inputs we mutate.
Thus, the number of sink function call sites that can crash
during fuzzing is often greater than the actual number of real
bugs. As shown in Table X, SFUZZ++ can find 125 alerts
and capture 67 other inputs in PoC results. By manual effort,
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we locate 24 false-positive cases among these alerts and 15
false-negative cases that SFUZZ++ cannot reveal. Due to page
restrictions, we present the reason and how to determine these
cases on Github'?. Finally, SFUZZ++ can discover 108 real
bugs (One bug may exist in multiple devices of one vendor.
Thus, the sum of unique bugs is 75—precisely, three duplicates
in D-Link, two duplicates in RICOH, three duplicates in TP-
Link, and 25 duplicates in Tenda) among 116 bugs of these
devices (the unique bugs count is 81).

VI. DISCUSSION

In this section, we discuss the limitation of SFUzZz++ and
explore the directions of improvement in the future.

Limitations. (1) Heuristics for Binary Analysis: Analyzing
stripped binaries is a fundamental challenge. While SFUZZ++
employs heuristics to automate load address and function iden-
tification, their effectiveness can be target-dependent. Conse-
quently, fully automated analysis is not always guaranteed, and
occasional manual intervention may be necessary for complex
firmware. (2) Precision-Focused Input Identification: Our
strategy for identifying inputs is intentionally designed to be
precise, focusing on high-confidence sources like explicit input
functions to minimize false positives. The inherent trade-off is
that some inputs in heavily stripped binaries might be missed,
potentially leading to false negatives. (3) Scope Limited
to Memory Vulnerabilities: SFuzz++ is currently focused
on detecting memory corruption vulnerabilities and does not
target logic bugs. This is a direct consequence of our slice-
guided methodology, which requires clear data flow between a
source and a sink. Logic vulnerabilities often lack such distinct
characteristics and robustly detecting them poses a substantial
challenge in resource-constrained RTOS environments.

Future Work. In our future work, we plan to address the
current limitations. Firstly, to improve implicit input point
recognition, we will explore leveraging Large Language Mod-
els (LLMs) for semantic analysis. By training models to un-
derstand the function of buffer variables from their context, we
aim to overcome the constraints of current heuristic methods
and improve the accuracy and completeness of input identifica-
tion. Secondly, to extend our analysis to logic vulnerabilities,
we intend to generalize the concepts of "source" and "sink".
This will involve creating abstract models for slicing that can
represent violations of program logic, thereby expanding the
detection scope of SFUzz++ beyond memory errors.

VII. RELATED WORK

RTOS Security. Armis Labs [13] reveals critical zero-days
that can remotely compromise the most popular real-time OS,
Vxworks [14], and demonstrates how to take over an entire
factory by leveraging these discovered vulnerabilities [16].
Zhu et al. [17] introduce how to find vulnerabilities with
fuzzing and debugging VxWorks devices. However, current
methods are not generic and rely on equipment for debug-
ging [17] or need heavy labor for manual analysis [14].

13 https://github.com/NSSL-SJTU/SFuzz_Pro/blob/main/discussion.md
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Symbolic Execution. Under-constrained symbolic execu-
tion [27] and compositional symbolic execution [3], [45] can
analyze programs in the UNIX operating system, such as UC-
KLEE [27], RWSet [46], and their improved methods [4], [28],
[29]. They identify critical data (e.g., Read&Write Sets [46],
Relevant Location Set [28]) that affect reachability to new
code, and detect and eliminate redundant states and paths
when exploring code space. Our slicing method prunes paths
based on whether the current function is related to handling
the external input or not. Exploring these irrelevant functions
does not help bug discovery, but may make the instruction
emulation fail or make the testing stuck. Therefore, eliminating
paths in SFuzz is designed to boot fuzzing in RTOS and
independent of these works in principle and target. UC-
KLEE [27] performs a function-scope analysis and suffers
from missing inter-procedural data flow. Moreover, these ad-
vanced approaches [3], [27], [28], [45], [46] are all designed
for checking source code or IR, which are popular at full-
fledged OS but scarce at RTOS. Thus, these methods need
massive effort for scaling on the binary of RTOS and have high
computation complexity when running on low-level instruc-
tions. Note that SFUZz++ performs the symbolic execution
based on symbolizing concrete inputs no matter in the Micro
Fuzzing engine and Concolic Analyzer module. Thus, they
iterate branches in a path triggered by this concrete value (e.g.,
crash input) and mitigate the path explosion problem.

Greybox Fuzzing & Dynamic testing. AFL [37] is a widely-
adopted coverage-guided fuzzing framework that has influ-
enced subsequent research, including T-Fuzz [33], Tortoise-
Fuzz [36], ZTaint-Havoc [60], and FOX [9]. AFLGo [42]
proposes directed greybox fuzzing, which makes a fuzzer gen-
erate inputs to efficiently reach a given set of target program
locations (i.e., vulnerable functions). This approach has been
applied in real-world software testing implementations, includ-
ing VD-Guard [35] and DDRace [34]. Hawkeye [43] evaluates
exercised seeds based on static information and the execution
traces to generate the dynamic metrics, which help Hawkeye
achieve better performance to touch the target sites. However,
directed fuzzing aims to reach sensitive locations, regardless
of roadblocks in execution paths that hinder efficient fuzzing
and steady emulation in RTOS. Similarly, IntelliDroid [31]
can directly generate inputs that trigger targeted Android APIs
as an over-approximation for malicious behaviors and allow
the dynamic analysis to decide whether they are malicious.
However, it must work with full-system dynamic analysis tools
(e.g., TaintDroid), which is hard to be satisfied in RTOS.
HARVESTER [32] integrates program slicing with dynamic
execution to automatically extract runtime values from highly
obfuscated Android malware. These advanced testing method-
ologies work well on full-fledged OS. However, due to the lack
of a stable system-wide emulation solution for RTOS, they can
not succeed without a greybox environment for inspecting the
context of the target program on the fly. Similarly, Fuzzware
[58] and Hoedur [59] also face challenges as they rely on
full-system emulation to perform fuzz testing of peripheral
(MMIO) inputs. These tools encounter additional difficulties
when applied to RTOS firmware, as the input sources for
RTOS are mostly network inputs rather than peripheral in-
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terfaces. Note that our slicing determines a coarse scope of
the tainted data and tailors roadblocks that hinder efficient
fuzzing and steady emulation in the RTOS binary. They make
the subsequent fuzzing process work fluently and effectively
on code snippets in terms of instruction flow without a system-
wide emulation. Applying the directed fuzzing strategies may
improve efficiency, and we will integrate them in future work.
Code Fragment Execution. Several methods have been
proposed to directly test vulnerable functions hidden in the
"deep" code. Ispoglou et al. [25] present a tool FuzzGen that
can automatically synthesize fuzzers for triggering deep code
in libraries within a given environment. However, FuzzGen
needs to compile the source code of the target library and
its consumers to infer the library’s interfaces. Voss [26]
designs UnicornAFL that adds the Unicorn-based test harness
to normal AFL. Thus, it can fuzz binary codes with many
CPU architectures, including ARM, X86, etc. However, Uni-
cornAFL only emulates instructions, cannot emulate peripheral
interaction and inter-procedural scheduling, and usually fails
in executing related instructions (e.g., interrupt) either.

VIII. CONCLUSION

We propose SFUZZ++, a novel slice-based fuzzing method,
to detect security vulnerabilities in RTOS. Based on the insight
that an RTOS monolithic system can be split into meaningful
code slices, SFuzz++ leverages LLM to identify external
input points, employs forward slicing to construct a tailored
execution tree and restore the context environment for efficient
fuzz testing, and utilizes forward and backward slicing to
perform concolic testing to verify unique crashes from fuzzing.
SFuzz++ has successfully discovered 82 zero-day software
vulnerabilities in 20 RTOS devices, and 78 have been assigned
CVE or CNVD IDs. Our evaluation result shows that each part
of SFUzz++ helps it outperform the state-of-the-art tools (e.g.,
UnicornAFL) in discovering bugs in RTOS.
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